Black Beltj

Demystify .NET App
Domains and Contexts

Do you want fault isolation and other plumbing perks without the usual overhead

hit? Learn to wield these sophisticated .NET processes.

Technologv Toolhox All .NET components and applications must

 VB.NET

o C#

(3 SQL Server 2000
J ASP.NET

0 XML

1 ViBb

Resources

“Remoting Object Model
Concepts” and “Context
Round Ohject Category,”

both in the MSDN library:

http://msdn.microsoft.
com/library

64

run in the Common Language Runtime (CLR)
managed environment, But the underlying operating
system knows nothing about managed code. It pro-
vides processes and raw memory only. So managed
code can’t execute in the native operating system
process. Instead, it uses a logical .NET process—
application domain—that hosts assemblies and pro-
vides them with process-wide services. Each app
domain interacts with the runtime DLL in the physi-
cal process space, providing its hosted assemblies with
a managed heap, garbage collection, Just-in-Time
(JIT) compiler, and assembly resolver and loader.
Moreover, because an app domain is only a logical
abstraction on top of a physical process, a process
actually can host multiple app domains (see Figure 1).
This provides fault isolation. By distributing unman-

by Juval Lowy

app domains are completely independent of one
another—even if they share the same physical pro-
cess, App domains can start and shut down separately
from their hosting process, and you can debug them
separately. App domains have security boundaries
and their own loaded set of assemblies.

On the other hand, the overhead involved in
making calls across app domains in the same process
is more like that of same-process calls than cross-
process calls—yet you pay only for creating and
managing a single process.

The .NET application frameworks take full
advantage of these important benefits. For ex-
ample, ASP.NET puts every Web app in its own
app domain, but they all share the same physical
process. You can easily create new app domains
yourself with the AppDomain class’ static method,

aged applications (typically
clients and servers) to multiple
processes, a single process can
fail without bringing down
thewholeapplication. Youcan
handle the error or perform

Process A

I
|| Assembly 1
a graceful exit. Distribution [l
L
| Assembly 2
L _
call authorization and authen- — P
tication checks.] Assembly 3
In the past, you paid an I

across processes also enhances
security because server objects
often require incoming client |

overhead penalty for these dis-

tribution benefits because of

E App Domain A | |

Process B
i i App Domain B : App Domain C

| Assembly 1 I Assembly 1 ‘ | i
RN
1l SEERSI | SRR :

i | ||| Assembly 4 I Assembly 4 | ‘ !
1| - PASRASSUENT ‘ 'I s e i
. | [
| || Assembly 5 ‘ | Assembly6 |

|
| | i

cross-process calls and the
overhead involved in manag-
ing multiple processes. NET

Figure 1 Discover Process and App Domains. An app domain is a logical
managed process that hosts assemblies. A physical process can host multiple
app domains, and app domains can start and shut down independently.

VISUAL STUDIO MAGAZINE * FEBRUARY 2002 + www.visualstudiomagazine.com

Process A Process B
App Domain 1 App Domain 2
num=3 —O 3

Figure 2 Marshal by Value. You can marshal any serializable object
marshaled by value across app domain boundaries. Once marshaled
by value, the new object is a cloned copy of the original and will
change state independently.

CreateDomain(). This method returns a new AppDomain ob-
ject, used to create new objects in the new app domain. You call
the Createlnstance() method of the AppDomain object, provid-
ing the required type and its containing assembly.

App domain indirection also enhances portability. Different
operating systems employ slightly different processes and process-
management APIs, but it’s all encapsulated from developers. You
need only be aware of app domains. You can rely on the CLR’s
native provider to implement app domains properly.

Call Across App Domains

You can access objects in the same app domain without much fuss.
But when you try to call methods on a remote object in another app
domain, you'll find that by default, you can’t access objects beyond
their hosting app domain. You must allow for such access explicitly
in your design and class definition.

You can cross the app domain boundary by value or by reference.
By value means when a client in App Domain 2 calls a method of
an object in App Domain 1, the object is copied to App Domain 2,
giving the client its own cloned copy of the object. Changes made
to the object state in App Domain 2 affect only the local copy. This
resembles COM marshal by value and is often referred to as
marshaling by value. To enable this, your managed class must be
serializable—it must provide a generic, automated way to serialize
its state to a stream so that NET in the receiving App Domain can
construct a new object, populating its member variables (its state)
with the information in the stream.

NET serialized classes can either use the Serializable attributes or
implement the ISerializable interface for custom serialization. Recall
thar serialization affects all object fields, public and private alike.

By itself, NET has no way of knowing which part of the object
state is serializable as is. The object might hold resources or objects
not marshalable by value, or parts of states that should be reacquired
in the new app domain. If you use the Serializable attributes, you
give your consent to marshal the object state auromatically. For
example, consider this class definition:

/{CH#
[Serializable]
public class MyClass
[

public int num;

VISUAL STUDIO MAGAZINE * FEBRUARY 2002

Process A Process B

App Domain 3

App Domain 1 ;

Client |
num =3)

Figure 3 Marshal by Refer-
ence. Any object derived from
MarshalByRefObject always ex-
ecutes in the same app domain.
Remote clients can access it
using only proxies, and many cli-

App Domain 2

ents can share the same object.

)

"VBLNET

<Serfalizable(}> Public Class VBClass
Public num &s Integer

End Class

If the object’s num member value is 3 and a remote client accesses
itacross an app domain boundary, NET will marshal the object by
value. When the remote client assigns 4 to num, this assignment
affects its own new distinct copy (see Figure 2).

You have a second remoting option: marshalling by reference.
When a client tries to access a remote object, .NET provides the
client with a proxy object that implements the same set of public
methods, properties, and fields as the object itself. The proxy
forwards proxy calls on to the actual object. Clients in the same app
domain as the object get a direct reference to the object; no proxies
are involved.

To designate an object for marshaling by reference, the object
must derive directly (or have one of its base classes derive) from

MarshalByRefObject (see Figure 3):

/ICH#
public class MyClass :
|

MarshalByRefObject

public int num;

'"VB.NET

Public Class VBClass
Inherits MarshalByRefObject
Public num As Integer

End Class

Put Things in Context

NET component services manage component connectivity and
services plumbing so you can focus on business logic. For example,
you get automatic thread concurrency synchronization, and .NET
Enterprise Services (née COM+). The latter provides essential
services such as object pooling, object activation, transactions,

* www.visualstudiomagazine.com 65

Intvoduciy
Soft WIRE

for Visual
Studio .NET™

The world’s only graphical
programming language to
run in Visual Studio .NET!

Catch the excitement of
creating powerful NET
applications graphically!

Replicate this program in
SoftWIRE...

Continued on next page.

SoftWIRE
s =g

www.softwire.com

SoftWIRE, Inc. = 16 Commerce Elvd.
Middieboro, MA 02346 - (508) 946-8900

66

Black Belt)

' Process A Process B
App Domain A : g l App Domain B App Domain C ,
| Context 1 | Context3 Context 5
HR 2 Ho~ N |
kgf i R o R
LB B e |
BB RS ulais| s e aNNE e
A e D RSN S i et e R e = I \ j'
| Context2 Context4 || ||
O ()i |
| 2 R [1]
! | ‘ ; | S LR R S TS | !

Figure 4 Examine App Domains and Contexts. App domains are subdivided into contexts
providing specific runtime environments to objects. App domains can have many contexts,

and a context can host many objects.

access security, disconnected work, publish-
ing and subscribing to events, and more.

To supply these services, .NET must
intercept the calls a client makes on the
object and do some pre- and post-call pro-
cessing. .NET does this by introducing a
proxy between client and object.

For example, the proxy is associated
with a lock to provide automatic thread
safety and concurrency synchronization. If
the object is available (not servicing an-
other thread), the proxy locks the lock and
forwards the call to the object. While the
call is in progress, NET blocks incoming
calls from other clients on other proxies
when they try to access the lock. When the
call returns from object to proxy, itunlocks
the lock, allowing other clients to use the
object. By intercepting the call and per-
forming pre-and post-call processing, NET
providesavaluable componentservice. For
another example—access security—the
proxy can verify clientauthorization before
letting it call the object.

The key to such services is ensuring that
you always have a proxy between client and
object. But app domain affords too coarse
an execution scope for this. Even though
cross-app domain calls always go through a
proxy, same-app domain calls use direct
reference. To address this, NET subdivides
app domains into contexts within which
objects execute (see Figure 4).

A context is a logical grouping of objects
that rely on the same set of services. Calls
into a context go through one or more
proxies to ensure that an object always gets

VISUAL STUDIO MAGAZINE + FEBRUARY 2002 = www.vi

the runtime environment it needs. Butifan
objectdoesn’t need these services, itshouldn’t
carry the overhead needed for cross-context
access. So all NET objects are classified by
whether they need component services.

Objects are context-agnostic by default,
lacking context affinity and always execut-
ing in the contexts of their calling clients.
Because such objects “jump” from one con-
text to another, they're also referred to as
context-agile objects. Objects marshaled by
value are context-agile by definition. You
can still marshal a context-agile object by
reference across app domains. Its agility
takes place inside an app domain only.

The other type, context-bound objects,
always execute in the same context. Their
context affinity is fixed for life. All calls to
context-bound objects go through proxies.
To qualify as a context-bound object, the
object must derive directly (or have one of
its base classes derive) from the class Context-
BoundObject:

/ICH

public class MyClass :
ContextBoundObject
flosad

"WVB.NET

Public Class VBClass
Inherits ContextBoundObject

End Class

To see how context-bound objects can
exploit . NET component services, consider

g zine.com

the class Synchronization attribute in the
System.Runtime.Remoting, Contexts name-
space, used for the automatic synchroniza-
tion [mentioned earlier:

/G
[Synchronization]
public class MyClass : ContextBoundObject
{
public void DoSomething(){})
//other methods and data members
|
'VBLNET
<Synchronization(J)> Public Class
VBClass
Inherits ContextBoundObject
Public Sub DoSomething()
End Sub
‘other methods and data members
End Class

By adding the Synchronization attribute,
NET automatically ensures that only one
thread may access the object at a time—no
need to implement this functionality your-
self. In fact, contexts are extensible; you can
define your own context attributes for cus-
tom services and extensions such as call
logging and tracing.

A context-bound object is, by definition,
marshaled by reference across app domains
because an object must never leave its con-
text. To enforce this, the class ContextBound-
Object derives directly from MarshalByRef-
Object. .NET decides on the object activa-
tion context based on the services the object
requires and the context of its creating client
when the client creates the object.

A creating client’s context is “good
enough” for an object’s needs if the context
has adequate runtime properties. In this
case, the object is placed in its creating client
context. But if the object requires services
notsupported by the creating client context,
NET creates a new context and places the
new object in it.

Note that .NET doesn’t try to find out if
there is already another appropriate context
for the object in that app domain. The
algorithm is simple: The object will either
share its creator’s context or get a new one.
Thisalgorithm trades memory and context-
management overhead for speed in allocat-
ing the new object to a context.

Also note that there’s no limit to the
number of contexts an app domain can host,
nor to the number of objects a particular
context can host. The only requirements are

VISUAL STUDIO MAGAZINE * FEBRUARY 2002 »

that a context must belong to exactly one app
domain; that a context-bound object must
belong to exactly one context; and that every
app domain starts up with only one context,
called the default context, which has no spe-
cial properties or attributes. This makes the
allocation algorithm simple to manage.

Ifyou're a COM+ developer, these rules
and behavior should look familiar because
NET context concepts adopt and extend
those of COM.

Finally, I wanted to say a few words
about passing object references around. Be-
cause you must always access context-bound
objects using proxies, what happens if a
client in the same context as the object
passes an object reference to a client in a
different context? If the same-context client
had a direct reference to the object, how
would .NET detect itand introduce a proxy
between the new proxy and the new client?

In the COM+ world, you had to marshal
object references berween contexts manu-
ally using the Global Interface Table. Notin
NET. Instead, NET always requires you to
access such objects using a proxy, even by
clients in the same context. It uses a rrans-
parent proxy that takes up minimal over-
head, and it does nothing with the services
the object uses.

However, the transparent proxy detects
when the same-context client tries to passits
transparent proxy to another client in a
different context. It then creates a new trans-
parent proxy in the second client context
and hooks it up with the actual proxy from
the new context to the object. vsm

Juval Lowy is a software architect and prin-
cipal of IDesign, a consulting and training
company focused on .NET design and migra-
tion. Juval authored COM and .NET Compo-
nent Services (O'Reilly). Juval is a frequent
speaker at software development confer-
ences and chairs the program committee of
the .NET California Bay Area User Group.
Contact him at www.componentware.net.

il Go Online)

Use these Locator+ codes at
www visualstudiomagazine.comtogo
directly to these related resources.
VS0202 Download all the code for this
issue of VSM.

VS0202BB_T Read this article online.

www.visualstudiomagazine.com

Continued from previous page.

...and be eligible to win this

Toshiba 50" TheaterWide-
HD" Plasma TV Monitor
and Sony Progressive-Scan
DVD Player!

Toshiba 50HPB1 §15,999

Sony DVP-SBO00ES §1,400

No purchase required. Simply
download SoftWIRE from the
Soft WIRE website. Install it in
your Visual Studio for VB6 or
NET. Build the application
following the instructions on our
site, and run it.

The running application creates
your entry.

Drawing to be held March 15,
2002. See our website for
complete rules and details.

SoftWIRE
s ———

www.softwire.com

SoftWIRE, Inc. » 16 Commerce Blvd.
Middleboro, MA 02346 + (508) 946-8900

67

	Visual Studio Feb 02 VOL 12 NO 2 Page 1.pdf (p.1)
	Visual Studio Feb 02 VOL 12 NO 2 Page 2.pdf (p.2)
	Visual Studio Feb 02 VOL 12 NO 2 Page 3.pdf (p.3)
	Visual Studio Feb 02 VOL 12 NO 2 Page 4.pdf (p.4)

